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Chapter 1IntroductionA wide range of integrated circuit and packaging design problems require accurate estimatesof the coupling inductances of complicated three-dimensional structures. The frequenciesof interest generally require magnetoquasistatic analysis, and the most commonly usedapproach is to apply �nite-di�erence or �nite-element techniques to a di�erential problemformulation. However, �nite-element techniques require that the entire 3-D volume bediscretized, and for complex structures, the generation of such a volume discretizationcan become cumbersome and require prohibitive execution time. Instead, volume-elementmethods can be applied to solving integral formulations of the problem in which case onlythe interior of the conductors need be discretized. Unfortunately, volume-element methodsgenerate dense matrix problems which, if solved directly, grow in computational cost liken3 and in memory like n2, where n is the number of elements into which the problem isdiscretized.This thesis describes a method for magnetoquasistatic analysis of complicated three-dimensional packages and interconnect. The method uses a standard volume-element dis-cretization of an integral formulation from magnetoquasistatic analysis also known as thePartial Element Equivalent Circuit (PEEC) method [16]. In this work, however, the dis-cretized equations are reformulated using a circuit analysis technique known as mesh anal-ysis. The mesh formulation leads to a dense system of equations which is solved iterativelyusing a rapidly converging Krylov-subspace method known as Generalized Minimal Resid-ual (GMRES). Finally, since the system of equations is dense, the matrix-vector productrequired at each iteration of GMRES is expensive and to reduce its cost, a multipole-15



accelerated algorithm is used. The combination of these techniques yields a packaginganalysis program, named FastHenry, whose computational complexity and memory re-quirements grow linearly with the number of volume-elements required to discretize theconductors.The next chapter gives background details about computing inductances using the PEECmethod. It begins with the integral formulation derived from Maxwell's equations underthe magnetoquasistatic assumption and continues with a description of the discretizationof conductor volumes. The �nal section takes these ideas and discusses the use of nodalanalysis which has been used in the past to give a system of equations which must be solvedto extract the desired inductance parameters. Chapter 3 discusses the mesh formulationand its advantages over nodal analysis for solution by iterative methods. Chapter 4 de-scribes the multipole-acceleration of the matrix vector products needed at each iteration ofGMRES. A signi�cant portion of this thesis has been the development of preconditionersto accelerate GMRES convergence as discussed in Chapter 5. Chapter 6 demonstrates theuse of FastHenry and gives accuracy and e�ciency results for a number of examples andconclusions are given in Chapter 7. Appendix A gives a brief description of the implemen-tation in FastHenry and Appendix B is the User's Manual distributed with the FastHenrycode.
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Chapter 2Background FormulationInductance extraction is the process of computing the complex frequency-dependent impedancematrix of a multiterminal system, such as an electrical package, under the magnetoqua-sistatic approximation [9]. For a problem of k terminal pairs, let Zr(!) 2 Ck�k denote thisimpedance matrix at frequency !. Then,Zr(!)~Is(!) = ~Vs(!); (2:1)where ~Is; ~Vs 2 Cn are vectors of the terminal current and voltage phasors, respectively [3].Note that column i of of Zr can be computed by setting entry i of ~Is to one, the rest tozero, and then computing the resulting voltage vector ~Vs. The ith column of Zr is thengiven by ~Vs.For illustration, consider a geometry consisting of two input-output terminal pairs asshown in Fig. 2-1. For this problem,Zr(!) = Rr(!) + j!Lr(!) = 264 R11(!) + j!L11(!) R12(!) + j!L12(!)R21(!) + j!L21(!) R22(!) + j!L22(!) 375 (2:2)where Rr is referred to as the resistance matrix, and Lr the inductance matrix. Also, L11and L22 are the self-inductances of the conductors, and L12 = L21 is the mutual inductance.As described above, column one of Zr can be computed by computing the voltages ~Vs1and ~Vs2 resulting from setting ~Is1 = 1 and ~Is2 = 0. Note that instead, Yr = Z�1r could becomputed in a similar manner by setting ~Vs and computing ~Is. The rest of this chapterdescribes the integral formulation and standard discretization used to compute the resultantvoltages, ~Vs, required to compute Zr, or currents, ~Is, to compute Yr .17
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Figure 2-1: Two conductors, each with an input and output terminal.2.1 Integral EquationSeveral integral equation-based approaches have been used to derive the Zr associatedwith a given package or interconnect structure [15, 1]. These integral formulations arederived by assuming sinusoidal steady-state, and then applying the magnetoquasistaticassumption that the displacement current, �!E, is negligible everywhere. Given this, beginwith Maxwell's Equations in sinusoidal steady state,r�E = �jw�H (2.3)r�H = jw�E + J (2.4)r � (�E) = � (2.5)r � (�H) = 0 (2.6)where ! is the angular frequency. In addition, within the conductors, by Ohm's law,J = �E (2:7)where � is the conductivity. As stated above, the frequencies of interest will be consideredsmall enough such that the displacement current, j!�E, can be neglected in (2.4). Thisassumption is clearly justi�ed within the conductors where the conductivity is large. Under18



this quasistatic assumption, the divergence of (2.4) gives current conservation,r � J = 0: (2:8)Note that for this work, we wish to allow for ideal current sources, and thus (2.8) becomesr � J = Is(r): (2:9)From this point, we wish to eliminate the �eld quantities, E and H , in favor of thecurrent density, J , and applied voltages. From Gauss' Law of magnetic 
ux, (2.6), themagnetic 
ux can be written as �H = r�A (2:10)where A is the vector potential. Applying this to (2.3),r� (E + jwA) = 0: (2:11)This implies that there exists a scalar function, �, such that�r� = E + jwA (2:12)where � will be called the scalar potential. We require one �nal relation to relate the vectorpotential, A to the current density, J . By use of (2.10) and by choosing the Coulomb gauge,r �A = 0: (2:13)Equation (2.4) then becomes � r2A = �J (2:14)and thus A(r) = �4� ZV 0 J(r0)kr � r0kdv0 (2:15)where V 0 is the volume of all conductors.Substituting (2.15) and (2.7), into (2.12) yields the following integral equation:J(r)� + jw�4� ZV 0 J(r0)kr � r0kdv0 = �r�(r): (2:16)Using equation (2.16) plus current conservation, (2.9), the conductor current density,J , and scalar potential, �, can be computed [1].19
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7 filaments

5 filamentsFigure 2-2: Single pin of a pin-connect divided into 5 sections, each of which is a bundle of35 �laments.2.1.1 DiscretizationGiven the magnetoquasistatic assumption, the current within a long thin conductor can beassumed to 
ow parallel to its surface, as there is no charge accumulation on the surface.Thus, for long thin structures such as pins of a package or connector, the conductor canbe divided into �laments of rectangular cross-section inside which the current is assumedto 
ow along the length of the �lament. In order to properly capture skin and proximitye�ects in these long, thin conductors, the cross section of the conductor can be divided intoa bundle of parallel �laments as shown in Fig. 2-2. It is also possible to use the �lamentapproach for planar structures, such as ground planes, where the current distribution istwo-dimensional. In such cases, a grid of �laments can be used, as in Fig. 2-3. Once theconductors are discretized into �laments, the interconnection of the current �laments canbe represented with a planar graph, where the n nodes in the graph are associated withconnection points between �laments, and the b branches in the graph represent the �lamentsinto which each conductor segment is discretized. An example graph, or circuit, for a singleconductor example is shown in Fig. 2-4.If the current density inside each �lament is assumed to be constant, then the approxi-mation to the unknown current distribution can then be written asJ(r) � bXi=1 Iiwi(r)li (2:17)20



Figure 2-3: Discretization of a Ground Plane. Segments are drawn one-third actual width.
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where Ii is the current inside �lament i, li is a unit vector along the length of the �lamentand wi(r) is the weighting function which has a value of zero outside �lament i, and 1=aiinside, where ai is the cross sectional area. By de�ning the inner product of two vectorfunctions, a and b, by (a;b) = ZV a � b dv (2:18)and following the method of moments [8], a system of b equations can be generated by takingthe inner product of each of the weighting functions with the vector integral equation, (2.16).This gives� li�ai� Ii + j! bXj=1 �4�aiaj ZVi ZV 0j li � ljkr � r0kdV 0 dV ! Ij = 1ai Zai(�A � �B) dA (2:19)where li is the length of �lament i, ai is the cross section, �A and �B are the potentialson the �lament end faces, and Vi and V 0j are the volumes of �laments i and j, respectively.Note that the right hand side of (2.19) results from integrating r� along the length of the�lament, and is e�ectively the average potential on face A minus the average on face B.In matrix form, (2.19) becomes(R+ j!L)Ib = ~�A � ~�B (2:20)where Ib 2 Cb is the vector of b �lament currents,Rii = li�ai (2:21)is the b� b diagonal matrix of �lament dc resistances,Lij = �4�aiaj ZVi ZV 0j li � ljkr � r0kdV 0 dV (2:22)is the b � b dense, symmetric positive de�nite matrix of partial inductances, and ~�A and~�B are the averages of the potentials over the cross sections of the �lament faces. Equation(2.20) can also be written as ZIb = Vb (2:23)where Z = R + j!L 2 Cb�b is called the branch impedance matrix and Vb = ~�A � ~�B isthe vector of branch voltages.Note that one can view, for instance, �lament i as a resistor with resistance Rii in serieswith an inductor with self-inductance Lii and mutual inductance Lij with �lament j. The22



circuit obtained from the graph described above is known as the Partial Element EquivalentCircuit [19, 15].It is worth noting that in the example discretization shown in Fig. 2-4b and c, theends of adjacent bundles of �laments are e�ectively shorted together at each node. Thisapproximation is acceptable when the conductor is long and thin and thus the transversecurrent is negligible. When the conductor is not long and thin, it may be more appropriateto join the bundles together with a small grid of short �laments or even by a full 3-Ddiscretization of �laments in the same manner that the ground plane in Fig. 2-3 is a 2-Ddiscretization.2.1.2 Nodal Analysis FormulationCurrent conservation, (2.9), must be enforced at each of n nodes where �laments connect.This can be written as AIb = Is (2:24)where A 2 Rn�b is the branch incidence matrix and Is is the mostly zero vector of sourcecurrents at the node locations. Each row in A corresponds to a �lament connection node,and each column to a �lament current. Column i in A has two nonzero entries: �1 in therow corresponding to the node from which �lament i's current leaves, and +1 in the rowcorresponding to the node into which �lament i's current enters.Since r2� = 0, the branch voltages, Vb, can be derived from a set of node voltages,denoted ~�n, as in At ~�n = Vb: (2:25)Combining (2.23), (2.24), and (2.25) yieldsAZ�1At ~�n = Is: (2:26)Notice that column i of Zr can now be computed by appropriately setting the sourcecurrents, Is, that correspond to ~Isi equal to one (unit current through conductor i), andthen solving (2.26) to compute the node voltages, ~�n. The di�erence of appropriate nodevoltages gives the entries of ~Vs, the vector of voltages across each of the conductors.In most programs, the dense matrix problem in (2.26) is solved with some form ofGaussian elimination or direct factorization. These programs avoid forming Z�1 explicitly23



by reformulating (2.26) into the sparse tableau form [17],264 Z �AtA 0 375264 Ib~�n 375 = 264 0Is 375 : (2:27)Using direct factorization to solve (2.27) implies that the calculation grows at least as b3,where again b is the number of current �laments into which the system of conductors isdiscretized. For complicated packaging structures, b can exceed ten thousand, and solving(2.27) with direct factorization will take days, even using a high performance scienti�cworkstation.

24



Chapter 3The Mesh-Based ApproachThe obvious approach to trying to reduce the cost of solving (2.27) is to apply iterativemethods. However, such methods converge slowly because (2.27) contains equations of twodi�erent types. Another approach is to reformulate the equations using mesh analysis, andthen apply an iterative method.This chapter �rst describes the reformulation using mesh analysis and then discussesthe use of a Krylov-subspace iterative method known as GMRES (Generalized MinimalResidual). Finally, the eigenspectra for the systems generated in (2.27) are compared tothose generated from mesh analysis as insight into the e�ectiveness of GMRES for solvingboth system.3.1 Mesh AnalysisIn mesh analysis [3], a mesh is any loop of branches in the graph which does not encloseany other branches. Also, the currents 
owing around any mesh in the network are theunknowns, rather than node voltages. Mesh analysis is easiest to describe if it is assumedthat sources generate explicit branches in the graph representing the discretized problem.Kircho�'s voltage law, which implies that the sum of branch voltages around each mesh inthe network must be zero, is represented byMVb = Vs (3:1)where Vb is the vector of voltages across each branch except for the source branches, Vs isthe mostly zero vector of source branch voltages, and M 2 Rm�b is the mesh matrix, where25
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Figure 3-1: One conductor, (a) as piecewise-straight sections, (b) discretized into �laments,(c) modelled as a circuit.m = b0� n+ 1 is the number of meshes and b0 is the number of �laments branches plus thenumber of source branches.The relationship between branch currents and branch voltages given in (2.23) still holds,and the mesh currents, that is, the currents around each mesh loop, satisfyM tIm = Ib; (3:2)where Im 2 Cm is the vector of mesh currents. Note that each of the entries in the terminalcurrent vector, ~Is from (2.1), will be identically equal to some entry in Im. And similarly,each of the entries in the terminal voltage vector, ~Vs, will correspond to some entry in Vs.Fig. 3-1 illustrates the de�nitions of the above quantities for a single conductor example.Combining (3.2) with (3.1) and (2.23) yieldsMZM tIm = Vs: (3:3)The matrix MZM t is easily constructed directly [3]. To compute the ith column ofthe reduced admittance matrix, Yr = Z�1r , solve (3.3) with a Vs whose only nonzero entrycorresponds to ~Vsi , and then extract the entries of Im associated with the source branches.26



Algorithm 3.2.1 (GMRES Algorithm for Ax = b).guess x0for k = 0; 1; : : : until converged fCompute the error, rk = b�AxkFind xk+1 to minimize rk+1based on xi and ri, i = 0; : : : ; kg3.2 Using an iterative solverThe standard approach to solving the complex linear system in (3.3) is Gaussian elimination,but the cost is m3 operations. For this reason, inductance extraction of packages requiringmore than a few thousand �laments is considered computationally intractable. To improvethe situation, consider using a conjugate-residual style iterative method like GMRES [18].Such methods have the general form given in Algorithm 3.2.1.Note that the GMRES algorithm can be directly applied to solving (3.3) because thematrixMZM t is easily constructed explicitly. This is not the case for the nodal formulation,(2.26), as either the Z matrix must �rst be inverted or the sparse tableau form in (2.27)must be used. The sparse tableau form is disadvantageous because it is a much largersystem of equations and it is di�cult to solve iteratively as described in the next section.When applying the GMRES algorithm to solving (3.3), the cost of each iteration of theGMRES algorithm is at least orderm2 operations. This follows from the fact that evaluatingrk implies computing a matrix-vector product, where in this case the matrix is MZM t andis dense. Note also that forming MZM t explicitly requires order m2 storage. As will bediscussed in Chapter 4, multipole acceleration can be used to reduce the matrix-vectorproduct cost and the required storage requirements to order b.3.3 Nodal versus Mesh AnalysisThe rate of convergence of GMRES for solving Ax = b can be related to the eigenspectrumof the matrix A. From this fact, the convergence properties of nodal analysis versus meshanalysis can be compared by observing the eigenspectra of the matrices produced by eachof these formulations.It is known that at the ith iteration, the GMRES algorithm produces a residual ri =27



b�Axi which satis�es krik2 = minp2Pi kpi(A)r0k2 (3:4)where Pi is the set of all ith degree polynomials, p, such that p(0) = 1 and k � k2 is theEuclidean norm [18]. If A is diagonalizable thenA = V �V �1 (3:5)where � is a diagonal matrix whose entries, �1; �2; : : :, are the eigenvalues of A and V isthe matrix whose columns are the eigenvectors of A. From substitution into (3.4),krik2kr0k2 � �(V )minp2Pi kp(�)k2; (3.6)� �(V )minp2Pimax�i jp(�i)j (3.7)where �(V ) � kV k2 kV �1k2 = �max(V )�min(V ) (3:8)is the condition number of the matrix V and �max(V ) and �min(V ) are the maximum andminimum eigenvalues of V , respectively.Note that �(V ) = 1 if A is normal, i.e. AAH = AHA where AH is the conjugate-transpose of A. Thus from (3.7), we see that for normal A, the error at iteration i ofGMRES is dependent on how well an ith degree polynomial can �t the eigenvalues of A.From this, consider some insights for matrices with real eigenvalues:� If the eigenvalues are spread over a large interval, convergence will be slow, whileclustered eigenvalues lead to faster convergence.� Due to the constraint that p(0) = 1, matrices with eigenspectra which have bothnegative and positive clusters of eigenvalues will converge slower than those witheigenvalues on only one side of the origin.� Also because p(0) = 1, eigenvalues close to the origin slow convergence.Consider now the spectra resulting from the nodal formulation, (2.27), and the meshformulation, (3.3), for the printed circuit board example described later in Fig. 5-8. Theprinted circuit board is two thin metal sheets sandwiching 255 small copper lines.28
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Figure 3-4: Convergence history of (A), the Sparse Tableau Formulation, and (B), the MeshFormulation for a coarse discretization of the printed circuit board example.structure. Preconditioning MLM t is discussed in Chapter 5 and the rest of this sectiondiscusses the di�culties in preconditioning the S matrix.In general, the GMRES iterative method applied to solving Cx = b can be signi�cantlyaccelerated by preconditioning if there is an easily computed good approximation to theinverse of C. We denote the approximation to C�1 by P , in which case preconditioning theGMRES algorithm is equivalent to using GMRES to solveCPy = b (3:10)for the unknown vector y. The solution is then computed with x = Py. Clearly, if P isprecisely C�1, then (3.10) is trivial to solve, but then P will be very expensive to compute.Preconditioning the S matrix is very di�cult since it contains equations of two di�erenttypes: those resulting from Vb = ZIb, and those from current conservation, AIb = Is. Whileit is possible to approximate the inverse of Z, it is di�cult to account for the e�ect of theA matrix. In some sense, the A matrix and its position in (2.27) are in fact responsible forthe many negative eigenvalues. As the following theorems show, for the ideal case of L = I ,where I is the identity, S has exactly n negative eigenvalues, where n is the number of rowsof A. Note that L = I corresponds to the low frequency limit of a system of conductors31



discretized into identical �laments.Theorem 3.3.1. Let C = 264 I BA 0 375 and assume AB is nonsingular and diagonalizable,where I is the bxb identity matrix, B 2 Rbxn, A 2 Rnxb and n < b.Then b�n eigenvalues of C are one, and the other 2n eigenvalues of C satisfy �(��1) = �0where �0 is an eigenvalue of AB.Proof. If AB is diagonalizable, for each eigenvector of AB with eigenvalue �0, there existtwo eigenvectors of C with associated eigenvalues satisfying �(��1) = �0. To show this, letx2 be an eigenvector of AB and let � be such that �(��1) = �0. Then, ABx2 = �(��1)x2.Since AB is nonsingular, � 6= 1, and letting x1 = Bx2=(�� 1) givesIx1 + Bx2 = �x1Ax1 = �x2 (3:11)and thus � 2 �(C) with eigenvector xt = [xt1 xt2]. 2n eigenvalue-eigenvector pairs are thusgiven by � = (1� p1 + 4�0)=2 and xt = [(Bx2)t=(�� 1) xt2]Next, suppose � 2 �(C), but � 6= 1 with eigenvector xt = [xt1 xt2] where x is di�erentfrom the previous 2n eigenvectors. Since Bx2 = (�� 1)x1 we getABx2 = �(�� 1)x2: (3:12)This is impossible since then x1 must be an eigenvector of AB and x an eigenvector of oneof the previous 2n eigenvalues.Theorem 3.3.2. The matrix S with Z = I has n negative eigenvalues and b positiveeigenvalues.Proof. Since AAt is positive de�nite, Thm 3.3.1 gives that the n negative eigenvaluesare given by � = (1�p1 + 4�0)=2: (3:13)where �0 2 �(AAt). Similarly, another n are positive, and the remaining b� n are equal toone.Even if Z�1 could be computed exactly, preconditioning using only Z�1 as inP = 264 L�1 00 I 375 (3:14)32
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Figure 3-5: Convergence history for the Sparse Tableau Formulation using L�1 as a pre-conditionerfor the high frequency limit, does not improve the performance of GMRES in part due tothe fact that there are still n negative eigenvalues. This can be shown by a similar argumentas in Theorem 3.3.2 with SP = 264 I AtAL�1 0 375 : (3:15)Note that AL�1At is positive de�nite since L is positive de�nite.In addition, SP is no longer normal, and for the printed circuit board example above,�(V ) � 104 where V is the eigenvector matrix of SP . The matrix, in fact, does notshow much improvement in convergence rate over the unpreconditioned system as shown inFig. 3-5.TheMZM t matrix does not su�er from the above di�culties because it has equations ofone type, and for the high frequency case, MLM t is positive de�nite. For this reason, thisthesis focuses on using the Mesh Formulation for inductance extraction. In Chapter 5, var-ious techniques are explored for preconditioning MLM t to signi�cantly accelerate GMRESconvergence. 33



Chapter 4The Multipole ApproachAs discussed in Section 3.2, the dominant cost of each iteration of GMRES results fromcomputing the matrix-vector product, (MZM t)Ikm where Ikm is the approximated solutionat the kth iteration. This operation requires order m2 operations and order m2 storageto store the MZM t matrix. It is possible to approximately compute MZM tIkm in orderb operations using a hierarchical multipole algorithm for electrostatic analysis [6]. Suchalgorithms also avoid explicitly forming MZM t, and so reduce the memory required toorder b. This chapter describes how a multipole algorithm can be used for inductanceextraction under the mesh formulation.4.1 The Electrostatic AnalogyTo show how a multipole algorithm can be applied to computing MZM tIkm, consider ex-panding the matrix-vector product by separating Z into its real and imaginary parts,MZM tIkm =MRM tIkm + j!MLM tIkm: (4:1)The MRM tIkm term can be computed in order m operations because R is the diagonalmatrix derived from the �lament resistances, and M is the sparse mesh matrix with orderm nonzero elements. Forming MLM tIkm is more expensive, requiring order m2 operationsas L is dense. From (2.19) and (2.22) it is clear that entry i of the portion of the product,LM tIkm, or equivalently LIb, is(LIb)i = bXj=1 �4�aiaj ZVi ZV 0j li � ljkr � r0kdV 0 dV! Ij : (4:2)34



In terms of the vector potential,(LIb)i = 1ai ZViA(r) � lidV: (4:3)Equation 4.3 is veri�ed since substituting (2.17) in (2.15) givesA(r) = �4� bXj=1 ZV 0j ljkr � r0kdV 0! Ijaj : (4:4)The above decomposition shows that LIb can be evaluated by integrating the vectorpotential, A, over each �lament [12]. Also, from (4.4), each component of the vectorpotential can be considered a scalar electrostatic potential generated by a collection ofcharges. That is, for p 2 f1; 2; 3g, the pth component of A(r), denoted  p(r) 2 C, is ascalar potential given by  p(r) = �4� bXj=1 ZV 0j (lj)pkr � r0kdV 0! Ijaj : (4:5)and therefore (Ij=aj) (lj)p can be interpreted as a charge density due to �lament j.The electrostatic analogy implies that LIb can be computed by combining the results ofevaluating the electrostatic potential along b �laments due to b �lament charges for threeseparate sets of �lament charges. It is the evaluation of these electrostatic potentials whichcan be accelerated with the hierarchical multipole algorithm [6]. That is, the electrostaticpotential due to b charges can be evaluated at b points in order b operations using thehierarchical multipole algorithm. Therefore, by using the multipole algorithm three times,LIb can be computed in order b operations.4.2 The Hierarchical Multipole AlgorithmA complete description of the fast multipole algorithm is quite lengthy, and can be foundin [6], or in the context of 3-D capacitance extraction, in [13, 14]. To see roughly what thealgorithm exploits to achieve its e�ciency consider the two con�gurations given in Figs. 4-1and 4-2, depicted in 2-D for simplicity. In either �gure, the obvious approach to determiningthe electrostatic potential at the n1 evaluation points from the n2 point-charges involvesn1 �n2 operations: at each of the n1 evaluation points one simply sums the contribution tothe potential from n2 charges.An accurate approximation for the potentials for the case of Fig. 4-1 can be computedin far fewer operations using multipole expansions, which exploit the fact that r >> R35
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Chapter 5Accelerating IterationConvergenceIn Section 3.3 it was observed that the GMRES iterative method converged slowly whenapplied to (3.3). In general, however, the GMRES iterative method applied to solving(3.3) can be signi�cantly accelerated by preconditioning if there is an easily computed goodapproximation to the inverse of MZM t. We denote the approximation to (MZM t)�1 byP , in which case preconditioning the GMRES algorithm is equivalent to using GMRES tosolve (MZM t)Px = Vs (5:1)for the unknown vector x. The mesh currents are then computed with Im = Px. Clearly, ifP is precisely (MZM t)�1, then (5.1) is trivial to solve, but then P will be very expensiveto compute. This chapter describes the e�orts of this work to develop preconditioners forMZM t.5.1 Local InversionAn easily computed good approximation to (MZM t)�1 can be constructed by noting thatthe most tightly coupled meshes are ones which are physically close. To exploit this obser-vation, for each mesh i, the submatrix ofMZM t corresponding to all meshes near mesh i isinverted directly. Then, the row of the inverted submatrix associated with mesh i becomesthe ith row of P . This is illustrated in Fig. 5-1, where the submatrix is drawn as a block38



266666666664 � � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � � 377777777775 264 � � �� � �� � � 375 266666666664 � �� � �� � �� � �� � �� � �� � 377777777775- ������:? MZM tP3 Pinvert P�13Figure 5-1: The steps leading to the third row of the preconditioner P (\�" denotes anon-zero element). Note that for illustration, P3 is drawn as a block along the diagonal.along the diagonal for illustration. We refer to this preconditioner as a \local-inversion"preconditioner, because it is formed by inverting physically localized problems.This preconditioner works well for pin-connect and other similar structures for whichmost of the meshes are small and thus what is `local' is obvious. The fact that most ofthe meshes are small can be observed from from Fig. 3-1 by noticing that most of themeshes, such as those associated with Im3, Im6, and Im9, are small and consist of only twophysically close �laments. Comparatively, there are relatively few large meshes, such asIm10, each which result from the presence of an external source and include many �laments.The many �laments which are included in each external source mesh span much of thephysical problem domain and therefore much of the problem can be physically close tothese large meshes. For this reason, the large meshes associated with sources cannot beincluded in the preconditioner, otherwise excessively large subproblems would be inverteddirectly. Since there are relatively few of these large meshes in a pin-connect structureand they are physically separate (only one per pin), not including the large meshes whenforming the preconditioner does not signi�cantly slow convergence.For large ground-plane problems, with possibly hundreds of external sources, the perfor-mance of local-inversion is severely degraded. As for pin-connects, many of the meshes aresmall; in this case, most meshes include four �laments (See Fig. 2-3). Each external source,however, requires the formation of a large mesh traversing the ground plane between its twocontact points as shown in Fig. 5-2. If there are hundreds of these meshes, in which casemany of them will be physically close or even possibly partially overlapping, local-inversionbecomes ine�ective since it cannot include large meshes.39
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convergence for the sparsi�ed preconditioners, as discussed in the next section. A pointworth noting here is that for these sparsi�ed preconditioners in the low frequency limit,! ! 0, we have that P�1, MZM t ! MRM t and therefore (MZM t)P ! I . The local-inversion preconditioner shows approximately the same convergence behavior at low andhigh frequency.From Fig. 5-3 it is apparent that local-inversion and sparsity-based preconditioning onlyslightly accelerated convergence over no preconditioning. Note that this example includesapproximately 300 large meshes.5.3 Positive de�nite sparsi�cations of LTo develop a better preconditioner, instead of sparsifying MZM t as described above, con-sider sparsifying the partial inductance matrix, L, and then generating the preconditionerby directly factoring the sparse result, P�1 = M(R+ j!Ls)M t, where Ls is the sparsi�edpartial inductance matrix. We call this class of preconditioners \sparsi�ed-L." Note that forthe low frequency limit, the whole problem would be factored exactly since R is diagonal.This section shows that this type of preconditioner is e�ective for a large class of problemsand that Ls must be chosen symmetric positive de�nite for this type of preconditioner tobe e�ective.To motivate the discussion of this section, consider the following two choices for Ls:the sparsest approach to choosing Ls would be to take the diagonal of L, or considersparsifying L based on the magnitude of the elements by zeroing all terms except thosethat satisfy L2ij > � jLiiLjj j, for some �. Fig. 5-4 compares this threshold sparsi�cation topreconditioning choosing Ls as the diagonal of L. Clearly, choosing Ls to be the diagonalof L produced the better preconditioner, yet many more terms were included in Ls for thethreshold sparsi�cation.5.3.1 The High Frequency LimitAs ! ! 1, the preconditioned matrix reduces to (MLM t)(MLsM t)�1. In what follows, itwill be shown that Ls should be chosen to be symmetric positive de�nite for this sparsi�ed-Lclass of preconditioners to be e�ective. 41



Lemma 5.3.1. The product of real symmetric positive de�nite matrices has positiveeigenvalues.Proof. Let A and B be real symmetric positive de�nite matrices, then A�1=2 and B�1=2exist and are also symmetric positive de�nite. AB has the same eigenvalues asD = A�1=2ABA1=2 = A1=2BA1=2 = (B1=2A1=2)t(B1=2A1=2) = CtC: (5:3)Then, for any vector x, xtDx = (Cx)t(Cx) = yty > 0, where y = Cx. Therefore, D haspositive eigenvalues.Theorem 5.3.2. If Ls is symmetric positive de�nite, then the preconditioned system,(MLM t)(MLsM t)�1 has positive eigenvalues.Proof. For any x, let y = M tx. Then xt(MLM t)x = ytLy > 0 since L is positivede�nite. Following a similar argument for MLsM t and using Lemma 5.3.1, the theorem isproved.Consider again the example of Ls as the threshold sparsi�cation of L, that is, formLs by zeroing all terms except those that satisfy L2ij > � jLiiLjj j, for some �. In thiscase, Ls is not necessarily positive de�nite. Fig. 5-4 compared this preconditioner for� = 0:1 to the preconditioner formed by taking Ls to be only the diagonal of L, which isobviously positive de�nite. Clearly, using the threshold sparsi�cation preconditioner resultsin slower convergence than using the diagonal-of-L preconditioner. This can be explainedby examining the spectra of the preconditioned matrices in Fig. 5-5. For both cases, theeigenvalues seem similarly clustered, except the threshold preconditioned matrix has a largecluster of negative eigenvalues while the diagonal-of-L preconditioned matrix is positivede�nite.Theorem 5.3.2 leads to the result that the condition number of preconditioned systemin the high frequency limit is bounded independent of the mesh matrix, M .Theorem 5.3.3. If Ls is positive de�nite, then�[(MLM t)(MLsM t)�1] � �(LL�1s )where, for a matrix with positive eigenvalues A, the condition number �(A) is de�ned as�(A) = �max(A)=�min(A) and �max(A) , �min(A) are the maximum and minimum eigenval-ues, respectively. 42
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Proof. For the matrix A = MLM t with preconditioner P�1 = MLsM t, and with themaximum eigenvalue �max(AP ), there is some y such that APy = �maxy. Then for x = Py,the generalized eigenvalue problem MLM tx = �maxMLsM tx is satis�ed. Therefore,�max(AP ) = xtMLM txxtMLsM txand so there is also a vector u =M tx such that�max(AP ) = utLuutLsuand so �max(AP ) � maxu utLuutLsuBy a similar argument, �min(AP ) � minv vtLvvtLsvand thus �[MLM t(MLsM t)�1] � �(LL�1s )The above two theorems lead to the conclusion that one should focus on choosing positivede�nite Ls matrices. As described above, the sparsest approach would be to take thediagonal of L. Another approach is to divide physical space into disjoint regions and thento include in Ls only the principal submatrices of L corresponding to the groups of �lamentscontained inside each region. Thus, a �lament will be included in exactly one region and byappropriately numbering the branches, Ls can be written as a block diagonal matrix. Animmediate approach is for each region, or block, to consist of the set of parallel �laments ina single section of conductor. Each block will then be no larger than the number of �lamentsin a section. For the simple one conductor example shown in Fig. 3-1, Ls would consist ofthree 4 � 4 blocks. Another choice is to uniformly divide space into cubes and have eachblock consists of �laments within a cube. This cube-block method is easy to implementsince the cube information is needed for implementation of the multipole algorithm. Notealso that the cube-block preconditioner is denser than the section-block or diagonal-of-Lpreconditioners.Theorem 5.3.4. Ls for the cube-block and section-block preconditioners is positive def-inite. 45



Proof. The set of eigenvalues of a block diagonal matrix is the union of the sets ofeigenvalues from each block. Since L is symmetric positive de�nite, so are all of its principalsubmatrices (See, for instance [11], p. 397). Given the block diagonals of Ls are principalsubmatrices of L, the theorem is proved.5.3.2 The General CaseUnder certain conditions the bound on GMRES convergence in the limit as ! ! 1 holdsfor all !.Theorem 5.3.5. Given a problem discretized with �laments of the same size, and assum-ing that the GMRES algorithm uses the diagonal-L preconditioner, the residual at iterationk, rk = b� ~Zm(!)xk, where ~Zm(w) is the preconditioned Zm =MZM t, satis�esjjrkjjjjr0jj � 2 "p� � 1p� + 1#k ; (5:4)where � = �(LL�1s ) = �(L), independent of frequency. The following observation andshort lemma will be used to prove Theorem 5.3.5.Observation 5.3.6. If all �laments are the same size, the matrices R and L are constantalong the main diagonal. The preconditioner P constructed from the main diagonal of L isP�1 = (r + j!l)MM t, where r and l are the diagonal elements of R and L respectively.Lemma 5.3.7. Given Zm = M(rI + j!L)M t, and P�1 = M(r + i!l)M t, the precondi-tioned matrix ~Zm = P 12ZmP 12 (5:5)is of the form ~Zm = Cej� [T + j�I ] (5:6)where T = T t is real-symmetric and C; �; � 2 R.Proof. As MM t is symmetric positive de�nite, P may be factored as P = P 12P 12 , withP 12 = 1pr + j!l(MM t)� 12 : (5:7)Also sinceMM t is symmetric positive de�nite, the preconditioner can be applied so thatthe preconditioned system is given by Eq. 5.5 (See, for instance [5]). Combining Eq. 5.7with Eq. 5.5, 46



P 12ZmP 12 = � rj!I + (MM t)� 12MLM t(MM t)� 12 � j!r + j!l (5:8)or P 12ZmP 12 = !pr2 + !2l2ej� [j�I + T ] (5:9)with � = tan�1 r!l , � = �r=! andT = (MM t)� 12MLM t(MM t)� 12 : (5:10)MLM t is positive de�nite since L is, and therefore T is symmetric positive de�nite.We are now ready to prove Theorem 5.3.5.Proof. From Lemma 5.3.7, ~Zm is of the form T + j�I , T symmetric positive de�nite.Therefore, using Theorem 4 in [4], the computed iterates xk satisfyjjb�Axk jjjjb�Ax0jj � 2Rk + 1=Rk � 2Rk (5:11)with R = c(!) +pc(!)2 � 1, and wherec(!) = p�max(T )2 + �2 +p�min(T )2 + �2�max(T )� �min(T ) : (5:12)Since c(!) < c1 � �max(T ) + �min(T )�max(T )� �min(T ) = �(T ) + 1�(T )� 1 (5:13)Then R � c1 +qc21 � 1 = p�(T ) + 1p�(T )� 1 � p�(L) + 1p�(L)� 1 (5:14)which combined with Eq. 5.11 proves the theorem.Remark. The preconditioned matrix ~Zm is normal and its eigenvalues lie on a line in thecomplex plane. To show this let C = !pr2+!2l2 . ~Zm is normal since ~Zm ~ZHm = C2(T 2+�2I) =~ZmH ~Zm. The eigenvalues �( ~Zm) = Cej�(j� + �(T )) clearly lie on a line, as the �(T ) arereal.As a demonstration with non-uniform �laments, consider the printed circuit board ex-ample described below, between the low and high frequency limits. The required numberof GMRES iterations monotonically and asymptotically increase toward the high frequencylimit (See Fig. 5-6). 47
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Figure 5-6: Convergence of GMRES using the sparsi�ed-L preconditioner on printed circuitboard package at various frequencies5.3.3 Performance of Sparsi�ed-L PreconditionersTo compare the relative merits of the diagonal-of-L, cube-block, and section-block precon-ditioners, consider the two industrial examples in Figs. 5-7 and 5-8. Fig. 5-7 is thirty-�vepins of a 68-pin cerquad package and Fig. 5-8 is a portion of a printed circuit board (PCB)that would be placed underneath a Pin-Grid-Array package. The PCB example consists oftwo resistive reference planes sandwiching 255 copper lines. Each plane in the PCB has 53external contacts not shown in the �gure. For this experiment, the cerquad package wasdiscretized into 3488 �laments which corresponds to 3305 meshes and each reference planein the PCB was discretized into a 60 � 60 grid of meshes giving a total 7501 meshes in-cluding the copper lines. The GMRES error in the solution at high frequency as a functionof iteration is plotted in Fig. 5-9 for the cerquad example, and in Fig. 5-10 for the PCBexample. Note that the section-block and diagonal-of-L preconditioners are identical for thePCB example since there is only one �lament per conductor section. As the �gures clearlyshow, the block diagonal preconditioners are an improvement over the diagonal-of-L andlocal-inversion preconditioners. It is worth noting that for the cerquad package example,the number of non-zero elements in the factored cube-block preconditioner is 43 times thatfor the diagonal-of-L preconditioner, possibly prohibiting its use for larger problems. Also,48



Figure 5-7: Half of a cerquad package. Thirty-�ve pins shown.
Figure 5-8: A portion of a printed circuit board directly underneath a PGA package. Tworesistive reference planes sandwiching 255 copper lines. Only the outline of the planes isdrawn.for the pin-connect example, unlike the PCB example, local-inversion preconditioning didbetter than diagonal-of-L. This behavior can be expected since there are only 35 largemeshes which must be excluded from the local-inversion preconditioner.
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Figure 5-9: Convergence of GMRES applied to the cerquad example with cube-block pre-conditioning (A), section-block preconditioning (B), diagonal-of-L preconditioning (C), andlocal inversion precondtioning (D).
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Chapter 6Algorithm ResultsIn this section we demonstrate the accuracy, utility, and computational e�ciency of themultipole-accelerated version of FastHenry. For an accuracy comparison, we consider theportion of a 68-pin package, shown previously in Fig. 5-7. Each pin consists of eight toten conductor sections. We discretized each section into 2� 2 �laments. This generated aproblem with 1368 branches for which MZM t is a 1061� 1061 dense matrix. Note, usingonly four �laments per section is hardly su�cient to model the skin e�ect, though with thecoarse discretization, the problem is small enough to make possible an accuracy comparisonbetween direct factorization, GMRES, and multipole-accelerated GMRES.For the example package, the mutual inductance between pins 1 and 2 (labeled clockwisefrom the right) is much larger than the mutual inductance between pins 1 and 18 whichare perpendicular to each other except for their vertical sections. To show that the approx-imations used by the hierarchical multipole algorithm are su�ciently well-controlled thatsmall coupling inductances are computed accurately, consider the results in Table 6.1. Themutual inductance between pins 1 and 18 is more than two orders of magnitude smallerthan the mutual inductance between pins 1 and 2, yet the solution computed using themultipole-accelerated algorithm is still within one percent of the solution computed usingdirect factorization.As an example of the utility of frequency dependent inductance extraction possible withFastHenry, consider the two cases of computing the mutual inductance between a pair of PCboard traces over a resistive ground plane, as shown in Fig. 6-1, and the same pair of tracesover a divided ground plane, as in Fig. 6-2. The traces have their return paths through the51



pin pair direct gmres multipole1 to 2 5.31870e+00 5.31867e+00 5.31403e+001 to 18 3.68292e-02 3.68223e-02 3.71027e-02Table 6.1: Comparison of the accuracy of the computed inductance matrix entries be-tween direct factorization, GMRES with explicit matrix-vector products, and the multipole-accelerated GMRES algorithm.
Figure 6-1: Two Traces over a Solid Ground Plane. The return path for the traces isthrough the plane. Traces are widened for illustration.ground plane. For the divided plane case, the two portions are electrically connected withshort resistive `tethers' toward the outer edges as shown. The traces are 8 mils wide, 1 milthick, 8 mils above the 1 mil thick ground plane, and their center to center distance is 32mils.If a current source is connected to one of the traces, current will 
ow down the traceand return through the plane. For the solid plane case, the current in the plane with a DC
Figure 6-2: Two Traces over a Divided Ground Plane. The return path for the traces isthrough the plane. The divided portions are connected together toward the edges as shown.Traces are widened for illustration. 52
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Figure 6-3: Current Distribution in Solid Ground Plane at DC and high frequencysource produces a current distribution pattern which spreads to �ll the width of the plane.Similarly in the divided plane case, the current spreads throughout most of the plane, butnarrows as it crosses the tethers. The situation at a high frequency is quite di�erent. Forthe solid plane, the ground plane return current is concentrated directly underneath thetrace, but for the divided plane the current leaves the path underneath the trace to crossthe tethers (See Figs. 6-3 and 6-4).This di�erence has a marked e�ect on the mutual inductance between the traces as thefrequency rises. For the solid plane, as the frequency rises, the current gathers underneaththe trace and the mutual inductance drops by two orders of magnitude, however for thedivided plane, little decrease is observed with frequency (See Fig. 6-5).To demonstrate the computational e�ciency of FastHenry, we successively re�ned acoarse discretization of the ground plane of the example shown in Fig. 6-1. As the dis-cretization of the plane is re�ned, the size of the problem will grow quickly, making thememory and CPU time advantage of the multipole-accelerated, preconditioned GMRESalgorithm apparent (see Figs. 6-6 and 6-7). As the graphs clearly indicate, the cost ofdirect factorization grows like m3, the cost of explicit GMRES grows as m2, but the cost53
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Figure 6-4: Current Distribution in Divided Ground Plane at DC and high frequency
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Figure 6-6: Comparison of the CPU time to compute the reduced inductance matrix fortwo traces over a solid plane using direct factorization, GMRES, and GMRES with withmultipole acceleration.of multipole-accelerated GMRES grows only linearly with m. In addition, the memoryrequirement for multipole-accelerated GMRES algorithm grows linearly with m, but growslike m2 for either explicit GMRES or direct factorization. In particular, for a 12; 802 meshproblem, the multipole accelerated algorithm is more than two orders of magnitude fasterthan direct factorization, and uses an order of magnitude less time and memory than ex-plicit GMRES. Note that the dotted lines in Figs. 6-6 and 6-7 indicate extrapolated valuesdue to excessive memory requirements.A signi�cantly more complex problem and one that uses the sparsi�ed-L preconditioneris the high frequency analysis of a portion of a PCB described previously and shown inFig. 5-8. To properly model the current 
ow in the two reference planes surrounding thecopper lines, the planes must be �nely discretized. Here again, as the discretization isre�ned, the cost of direct factorization grows like m3, the cost of explicit GMRES grows asm2, but the cost of multipole-accelerated GMRES grows only linearly with m as shown inFig. 6-8. For this PCB example, the associated impedance matrix is 18x18, while the pairof traces over plane example has only a 2x2 impedance matrix. Thus, nine times as manyGMRES solutions are required to compute the PCB example's impedance matrix. Evenso, for a 10; 000 mesh problem, the multipole-accelerated GMRES algorithm is still over anorder of magnitude faster in computation time.55
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Precond. Size of Precond. Total Total number Average # oftype MZM t factor time execution time of iterations iters. per solvediagonal-L 751x751 0.26 450.46 729 41cube-block 751x751 6.07 254.35 374 21diagonal-L 1099x1099 0.81 1042.57 760 42cube-block 1099x1099 11.86 755.12 518 29diagonal-L 2101x2101 3.43 1901.58 760 42cube-block 2101x2101 44.91 1381.15 502 28diagonal-L 4351x4351 15.87 5522.79 842 47cube-block 4351x4351 174.13 4609.96 641 36diagonal-L 7501x7501 46.24 8894.92 883 49cube-block 7501x7501 452.11 7309.18 635 35Table 6.2: Execution times and iteration counts for diagonal-of-L and cube-block precon-ditioning of the printed circuit board example. Times are in CPU seconds for the DECAXP3000/500.
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Chapter 7ConclusionsIn this thesis, it is shown that 3-D inductance extraction can be substantially acceleratedusing the hierarchical multipole algorithm. The multipole-accelerated inductance extractionprogram, FastHenry, was shown to be more than two orders of magnitude faster than directfactorization when used to extract the inductance matrix for realistic packaging examples.In addition, the multipole-accelerated algorithm uses an order of magnitude less time andmemory than the explicit GMRES algorithm. Finally, the sparsi�ed preconditioner insuresrapid convergence even for very irregular problems, making FastHenry a robust program.
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Appendix AFastHenry ImplementationThe following is a pseudo-code description of the implementation of FastHenry as a com-puter program. The aim is to aid in putting together the ideas of this thesis in order tounderstand the partially commented FastHenry C code which is available via anonymousftp from rle-vlsi.mit.edu.The variable sys used below refers to a structure which contains pointers to many ofthe structures and matrices needed by most functions. seg-list the a list of all segments,fil-list is the list of all �laments.main(argc, argv)f/* read the geometry speci�ed in the input �le. See Appendix B */readGeom(sys);/* divide each section, or segment, into �laments based on nhinc, nwinc. See Chapter 2 */for each seg in seg-list fassignFil(seg);g/* Call routines similar to FastCap to compute multipole expansions with each �lamentcorresponding to a FastCap 'charge'. See Chapter 4 */SetupMulti(sys);/* Find user de�ned meshes, from algorithm in [2], pages 280-284. For the mesh formulation,the user may have created loops in the speci�ed geometry. This �nds those loops in thisuser created graph*/make trees(sys); 59



/* If user has put holes in any reference planes, must make one mesh for each of these holes*/find hole meshes(sys);/* Create the Mesh Matrix M (see below and also Chapter 3) */fillM(sys);/* Fill the R and L matrices (see below and also Chapter 2) */fillZ(sys);for each frequency point f/* form preconditioner for this frequency (Chapter 5)*/indPrecond(sys,frequency);/* Do one solve with GMRES for each terminal pair speci�ed in geometry */for each ext in terminal-pair-list f/* �ll the right hand side corresponding to this ext turned on */fill b(ext,b);/* call gmres to solve for solution, x. (see below and Chapter 3) */gmres(sys,b,x);/* multiply x by preconditioner one last time and put result in x */multPrecond(sys,x,y);x = y;/* extract the appropriate entries in x to go into one column of reduced admittancematrix, Y */extractYcol(Y, x, ext, terminal-pair-list);g/* save Y to disk */dump to Ycond(Y);/* invert Y to get Zc */invert(Y,Zc);/* save Zc to disk */cx dumpMat totextfile(Zc, "Zc.mat");gg/* this function creates the M matrix. Actually, it creates Mlist, a60



list of meshes */fillM(sys)f /* make a mesh out of user created graph loops (found in make trees() ) */for each loop fmake mesh from path(loop,Mlist);g/* Make meshes resulting from a segment being divided into many �laments (two �lsper mesh) */for each seg in seg-list fmake fil meshes(seg,Mlist);g/* make meshes resulting from discretizing ground plane. (four �ls per mesh) */for each plane in plane-list fmakeMlist(Mlist, plane);gg/* this computes the diagonal R matrix (resistance of each �l) and the dense L matrix (par-tial inductance matrix). This is only called if the matrix-vector products are done directly,however the mutual() function is called for multipole products when inside SetupMulti()for the interactions which are to be done directly */fillZ(sys)f for each filament, fili, in fil-list fR[fili] = resistance(fili);for each filament, filj, in fil-list fif (fili == filj)L[fili][fili] = selfterm(fili);else/* compute mutual inductance between two �ls. See [7] and [10]. */L[fili][filj] = mutual(fili, filj);ggg/* This computes the solution x with right hand side b and implicit matrix A. This pseudo-code version is similar to Algorithm 3.2.1.*/gmres(sys,b,x)f /* assume initial guess, x, is zero. norm() is the Euclidean norm of a vector. */r0 = r = b; 61



k = 0;while (norm(r)/norm(r0) > tolerance) and (k < max iterations) fk = k + 1;/* compute matrix-vector product with mulitpole algorithm (see below)*/SetupComputePsi(sys,x,p);r = b - p;/* update x as described in [18]. */x = update x();gg/* use multipole algorithm to compute Ax. Return value in p */SetupComputePsi(sys,x,p)f /* apply preconditioner, result in y */multPrecond(sys,x,y);/* Call multipole algorithm for each of the three components of the vector potential.(MLMt)y */p = 0;for i = 1 to 3 fp = p + ComputePsi(y,i,sys);g/* add in the contribution due to (MRMt)y */p = p + do real part(sys,y);g
62



Appendix BFastHenry User's Manual
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FastHenry USER'S GUIDEM. Kamon C. Smithhisler J. WhiteResearch Laboratory of ElectronicsDepartment of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridge, MA 02139 U.S.A.28 June 1993
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Copyright c
 1993 Massachusetts Institute of Technology, Cambridge, MA. All rights re-served.This Agreement gives you, the LICENSEE, certain rights and obligations. By using thesoftware, you indicate that you have read, understood, and will comply with the terms.M.I.T. MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED.By way of example, but not limitation, M.I.T. MAKES NO REPRESENTATIONS ORWARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PUR-POSE OR THAT THE USE OF THE LICENSED SOFTWARE COMPONENTS ORDOCUMENTATION WILL NOT INFRINGE ANY PATENTS, COPYRIGHTS, TRADE-MARKS OR OTHER RIGHTS. M.I.T. shall not be held liable for any liability nor for anydirect, indirect or consequential damages with respect to any claim by LICENSEE or anythird party on account of or arising from this Agreement or use of this software.65



This manual describes FastHenry, a three-dimensional inductance extraction program.FastHenry computes the frequency dependent self and mutual inductances between con-ductors of complex shape. The algorithm used in FastHenry is an acceleration of the meshformulation approach. The linear system resulting from the mesh formulation is solvedusing a generalized minimal residual algorithm with a fast multipole algorithm to e�cientlycompute the iterates.This manual is divided into two sections. The �rst section explains how to prepare input�les for FastHenry. The input �les contain the description of the conductor geometries. Thesecond section shows how to run the program. It mainly explains how to modify the defaultsettings assumed by FastHenry. Also included in this section is output from an examplerun.Information on compiling FastHenry, obtaining the FastHenry source code and corre-sponding about FastHenry is given in Appendix B.3.B.1 How to Prepare Input FilesThis section of the manual describes how to prepare input �les for FastHenry. The input�les specify the discretization of conductor volumes into �laments. The input �le speci�eseach conductor as a sequence of straight segments, or elements, connected together at nodes.Each segment has a �nite conductivity and its shape is a cylinder of rectangular cross sectionof some width and height. A node is simply a point in 3-space. The cross section of eachsegment can then be broken into a number of parallel, thin �laments, each of which will beassumed to carry a uniform cross section of current along its length. The �rst part of thissection describes the �le format through a simple example. A detailed description is in thesecond part, and more complex examples can be found later in this manual.B.1.1 A Simple ExampleThe following is an input �le which calculates the loop inductance of four segments nearlytracing the perimeter of a square:**This is the title line. It will always be ignored**.* Everything is case INsensitive* An asterisk starts a comment line.* The following line names the length units for the rest of the file.Units MM* Make z=0 the default z coordinate and copper the default conductivity.* Note that the conductivity is in units 1/(mm*Ohms), not 1/(m*Ohms)..Default z=0 sigma=5.8e4* The nodes of a square (z=0 is the default)N1 x=0 y=0N2 x=1 y=0N3 x=1 y=1N4 x=0 y=1N5 x=0 y=0.01 66



W=0.2 mm

H = 0.1 mm

1 mm

N1

N2

Figure B-1: Example Segment for Sample Input File* The segments connecting the nodesE1 N1 N2 w=0.2 h=0.1E2 N2 N3 w=0.2 h=0.1E3 N3 N4 w=0.2 h=0.1E4 N4 N5 w=0.2 h=0.1* define one 'port' of the network.external N1 N5* Frequency range of interest..freq fmin=1e4 fmax=1e8 ndec=1* All input files must end with:.endAs described in the comments, .Units MM de�nes all coordinates and lengths to be inmillimeters. All lines with an N in the �rst column de�ne nodes, and all lines starting withE de�ne segments. In particular, the lineE1 N1 N2 w=0.2 h=0.1de�nes segment E1 to extend from node N1 to N2 and have a width of 0.2mm and height of0.1 mm as drawn in Figure B-1. If the n � n impedance matrix, Z(!), for an n-conductorproblem is thought of as the parameters describing an n-port network, then the line.external N1 N5de�nes N1 and N5 as one port of the network. In this example, only one port is speci�ed, sothe output will be a 1 � 1 matrix containing the value of the impedance looking into thisone port.FastHenry calculates Z(!) at the discrete frequencies described by the line.freq fmin=1e4 fmax=1e8 ndec=1where fmin and fmax are the minimum and maximum frequencies of interest, and ndec isthe number of desired frequency points per decade. In this case, Z(!) will be calculated at104; 105; 106; 107; and 108 Hz. All input �les must end with .end.67



W=0.2 mm
nwinc = 7

H = 0.1 mm
nhinc = 5

1 mm

N1Figure B-2: Segment discretized into 35 �lamentsIn the above example, FastHenry created one �lament per segment since no discretizationof the segments into �laments was speci�ed. In order to properly model non-uniform crosssectional current due to skin and proximity e�ects, a �ner discretization must be used.Finer �laments are easily speci�ed in the segment de�nition. For example, replacing thede�nition for E1 withE1 N1 N2 w=0.2 h=0.1 nhinc=5 nwinc=7speci�es that E1 is to be broken up into thirty-�ve �laments: �ve along its height (nhinc=5)and seven along its width (nwinc=7). See Figure B-2.B.1.2 Input File SyntaxThe previous section described many of the basics required for an input �le. This sectiongives a more complete and detailed description of the input �le format and should serve asa reference.Some general facts about �le syntax:� Lines are processed sequentially� Upper and lower case are not distinguished.� Lines are restricted to 1000 characters but can be continued with a \+" as the �rstcharacter in subsequent lines. Intervening \*" lines are not allowed.� \*" marks a comment line.� The �rst line in the �le is considered the title line and is ignored. It is recommendedthat this line start with an \*" for future compatibility.� The �le must end with the .End keyword.In general, each line in the input �le will either de�ne some geometrical object, suchas a node or segment, or it will specify some program parameter. All input lines thatde�ne geometrical objects begin with a letter de�ning their type, and then some uniquealphanumeric string. For instance, all node de�nitions begin with the letter N. This setsobject lines apart from parameter speci�cation lines which begin with a period, \.".The remainder of this section will describe all possible input lines. In the followingdescription, all arguments enclosed in `[ ]' indicate an optional argument. If not included on68



the input line, the actual value used for this argument will be either the program default,or the user default de�ned by the .Default keyword (described below).Node De�nitionsSyntax: Nstr [x = x_val] [y = y_val] [z = z_val]This de�nes a node called Nstr where str is any alphanumeric string. The �rst characteron the line must begin with an N for this to be interpreted as a node de�nition. The node willhave location (x val; y val; z val) where each coordinate has units de�ned by the .Unitskeyword.Any of the coordinates can be omitted assuming that a default value has been previouslyspeci�ed with the .Default keyword. Otherwise, an error will occur and the program willexit.Segment De�nitionsSyntax: Estr node1 node2 [w = value] [h = value] [sigma, rho = value][wx = value wy = value wz = value][nhinc = value] [nwinc = value]This de�nes a segment called Estr where str is any alphanumeric string. The �rstcharacter on the line must begin with the letter E for this to be interpreted as a segmentde�nition. The segment will extend from node node1 to node node2 where these are pre-viously de�ned node names. h and w are the segment height and width. Either sigma, theconductivity, or rho, the resistivity, can be speci�ed for the segment.Discretization of the segment into multiple, parallel thin �laments is speci�ed with thenhinc and nwinc arguments. nhinc speci�es the number of �laments in the height direction,and nwinc, the number in the width direction. Both must be integers. See Figure B-2.To specify the orientation of the cross section, wx, wy, and wz represent any vectorpointing along the width of the cross section. If these are omitted, the width vector isassumed to lie in x-y plane perpendicular to the length. If the length lies along the z-axis,then the width is assumed along the x-axis.h and w can be omitted provided they are assigned a default value in a previous .Defaultline.nhinc, nwinc, and sigma or rho can be omitted, and if not previously given a defaultvalue, then 1, 1, and the conductivity of copper, respectively, are used as default values.Note that the nodes used to de�ne the nodes must be nodes de�ned under Node Def-initions described above and cannot be ground plane nodes. To connect to the groundplane, the user must instead create a new node at the desired location as described inNode De�nitions and then use the .Equiv keyword to equivalence the ground plane nodeand the new node..Units keywordSyntax: .Units unit-nameThis speci�es the units to be used for all subsequent coordinates and lengths untilthe end of �le or another .Units speci�cation is encountered. Allowed units are meters,69



centimeters, millimeters, micrometers, inches, and mils with unit-name speci�ed as m, cm,mm, um, in, mils, respectively.Note that this keyword a�ects the expected units for the conductivity and resistivity..Default keywordSyntax: .Default [x = value] [y = value] [z = value] [w = value][h = value] [sigma, rho = value][nhinc = value] [nwinc = value]This keyword speci�es default values to be used for subsequent object de�nitions. Acertain default value is used until the end of the �le, or until it is superseded by another.Default line changing that value..External keywordSyntax: .External node1 node2This keyword speci�es node node1 and node node2 as a terminal pair or port whoseimpedance parameters should be calculated for the output impedance matrix. If an input�le includes n .External lines, then the impedance matrix will be an n�n complex matrix.This keyword e�ectively places a voltage source between these nodes and will later usethe current through that source to determine an entry in the admittance matrix. Note thatit is up to the user to insure that there are NO loops of only voltage sources. Also, a voltagesource with no possible return path will always have zero current through it producing arow of zeros in the admittance matrix. The output impedance matrix will thus be nonsense..Freq keywordSyntax: .Freq fmin=value fmax=value [ndec = value]This keyword speci�es the frequency range of interest. fmin and fmax are the minimumand maximum frequencies of interest, and ndec is the number of desired frequency pointsper decade. FastHenry must perform the entire solution process for each frequency.Note that ndec need not be an integer. For instance,.freq fmin=1e3 fmax=1e7 ndec=0.5will have FastHenry calculate impedance matrices for f = 103; 105; and 107 Hz.If fmin is zero, FastHenry will run only the DC case regardless of the value of fmax..Equiv keywordSyntax: .Equiv node1 node2 node3 node4 ...This keyword speci�es that nodes node1, node2, node3, node4,... are to be con-sidered electrically equivalent yet maintain their separate spatial coordinates. It basically`shorts' all these nodes together. If any of the node names are not previously de�ned, thenthey become pseudonyms for those nodes in the list which are de�ned.70



Figure B-3: Discretization of a Ground Plane. Segments are one-third actual width..End keywordSyntax: .EndThis keyword speci�es the end of the �le. All subsequent lines are ignored. This linemust end the �le.Ground Plane de�nitionsSyntax: Gstr x1=value y1=value z1=value x2=value y2=value z2=valuex3=value y3=value z3=valuethick=value seg1=value seg2=value [sigma, rho = value][nhinc=value] [relx=value] [rely=value] [relz=value][Nstr1 (x_val,y_val,z_val) ][Nstr2 (x_val,y_val,z_val) ][Nstr3 (x_val,y_val,z_val) ].....[hole <hole-type> (val1,val2,....)][hole <hole-type> (val1,val2,....)].....This de�nes a ground plane of �nite extent and conductivity called Gstr where str is anyalphanumeric string. The �rst character on the line must begin with the letter G for this to beinterpreted as a ground plane de�nition. The three locations (x1; y1; z1); (x2; y2; z2); (x3; y3; z3)mark three of the four corners of the plane in either clockwise or counterclockwise order.The code will determine the fourth corner assuming the �rst three are corners of a paral-lelogram. Actually, the plane must be a rectangle, but this condition may not be 
aggeduntil later in the code. The thickness of the plane is speci�ed with the thick argument andthe conductivity with either the sigma or rho argument.The ground plane is approximated by �rst laying down a grid of nodes on the plane,and then connecting, with a segment, every node to its adjacent nodes excluding diagonallyadjacent nodes. Each segment is given a height equal to the speci�ed thickness of the planeand width equal to the node spacing in order to completely �ll the space between segments.Figure B-3 shows a sample ground plane with segments that are one-third normal widthfor illustration.seg1 and seg2 specify the number of segments along each edge of the plane. seg1 willbe the number of segments along the edge from (x1; y1; z1) to (x2; y2; z2) and seg2, thenumber along the edge from (x2; y2; z2) to (x3; y3; z3). Thus the total number of nodes71



created will be (seg1+1)*(seg2+1), and the total number of segments created will be(seg1+ 1) � seg2+ seg1 � (seg2+ 1) .nhinc can be used to specify a number of �laments for discretization of each segmentalong the thickness. This could be used for modelling nonuniform current along the thick-ness. If omitted, the value of 1 is assumed, regardless of the .Default setting.In general, since the ground plane nodes are generated internally, there is no way to referto them later in the input �le. The exceptions to this are the nodes explicitly referenced inthe ground plane de�nition. The argumentNstr1 (x_val,y_val,z_val),where str1 is an alphanumeric string, will cause all subsequent references to Nstr1 to referto the node in the plane closest to the point (x val; y val; z val). Note that no spaces areallowed between the `()'. This referencing is accomplished, in e�ect, by doing the equivalentof.Equiv Nstr1 <internal-node-name>where <internal-node-name> is the internal node name of the nearest ground plane node.If one or more of relx, rely, and relz are speci�ed, then the above node referencinginstead chooses the node closest to (x val+relx; y val+rely; z val+relz). In other words,relx, rely, and relz default to 0 if not speci�ed.A coarse ground plane may cause two di�erent references to refer to the same groundplane node. FastHenry will warn of such an event, but it is not an error condition.Holes can be speci�ed in the plane withhole <hole-type> (val1,val2,val3,...)where <hole-type> is the hole type and the valn's make the list of arguments to be sent tothe hole generating function. Holes are generated by �rst removing ground plane nodes, andthen removing all segments connected to those nodes. The following describes the availablehole generating functions:hole point (x,y,z)removes the node nearest to the point (x,y,z).hole rect (x1,y1,z1,x2,y2,z2)removes a rectangular region whose opposite corners are the nodes in the plane nearest(x1,y1,z1) and (x2,y2,z2).hole circle (x,y,z,r)removes the nodes contained within the circle of radius r centered at (x,y,z).hole user1 (val1,val2,...)calls the user de�ned function hole user1() to remove nodes. user1 - user7 are available.The user can add the functions to the source �le hole.c contained in the release. See thefunctions hole rect(), hole point(), and hole circle() to see examples of the format for writinguser hole functions.Any shaped hole can be formed with a combination of hole directives. A few exceptionsexist, however. Forming a hole that isolates or nearly isolates a section of the plane is notallowed. FastHenry warns of this with: 72



Warning: Multiple boundaries found around one hole regionpossibly due to an isolated or nearly isolated region of conductor.This may lead to no unique solution.Holes may not be produced as expected if the discretization of the plane is coarse. Itis recommended that the plane be viewed by using the options '-f simple -g on' options togenerate a fastcap �le which can be used to generate a postscript image of the plane.See example hole.inp.Warning: Fast convergence for ground planes has not been fully accomplished. At thetime of release, some ground planes with many closely coupled conductors converged slowlyusing the iterative algorithm. This may also happen when nhinc > 1. If you have practicalexamples for which this happens, please send them to fasthenry@rle-vlsi.mit.edu.B.2 Running FastHenryThe basic form of the FastHenry program command line isfasthenry [<input file>] [<Options>]Usually only the input file, as described in the previous section, is speci�ed. For example,the commandfasthenry pin-connect.inpruns fasthenry on the example pin connect structure.Information about the input �le and other FastHenry information are sent to the stan-dard output. The impedance matrices for the frequencies speci�ed in the input �le will beplaced in the �le Zc.mat. The source �le ReadOutput.c is a sample program for readingthe output �le for postprocessing.B.2.1 Command Line OptionsThis section describes using the command line options for changing the defaults settings.All arguments are case insensitive.-s fludecomp | iterativeg - Speci�es the matrix solution method used to solve thelinear system arising from the discretization. iterative uses the GMRES iterative algo-rithm and ludecomp uses LU decomposition with back substitution. In general, GMRES isfaster, however some speed up may be obtained using LU decomposition for problems withfewer than 1000 �laments. iterative is the default.-m fdirect | multig - Speci�es the method to use to perform the matrix-vectorproduct for the iterative algorithm. direct forms the full matrix and performs the productdirectly. multi uses the multipole algorithm to approximate the matrix-vector product.For larger problems, the multipole algorithm can save both computation time and memory.multi is the default.-p fon | offg - Determines whether or not to precondition the matrix to accelerateiteration convergence. on is the default.-o n - Speci�es n as the order of multipole expansions. Default is 2.-l fn | autog - Speci�es n as the number of partitioning levels for the multipole algo-rithm. auto chooses the level automatically and is the default.73



-f foff | simple | refined | bothg - Speci�es the type of FastCap generic �le tomake for visualization ONLY. off will produce no �le and is the default. simple willproduce a �le named fastcapfile from the segments de�ned in the input �le. refinedproduces a similar �le, named fastcapfile2, but using the segments produced by eitheruser re�nement with -i or required re�nement necessary for accuracy of the multipolealgorithm. both produces both �les. One FastCap 'panel' is created for each of the foursides along the length of the each segment. Ground planes are handled di�erently. See the-g option below. fastcap -mfastcapfile should produce the appropriate postscript �le.See the FastCap manual for more details.-g fon | offg - controls appearance of the ground plane when using the -f option. onwill draw all the overlapping segments of the ground plane. Note that this may take a longtime to run through fastcap to generate a postscript image. off is the default and onlyfour panels are produced for each plane, one for each of the edges. Thus only the outlineof each plane is drawn. This makes generation of the postscript image faster and also theplanes are transparent. No holes are visible however.-a fon | offg - on allows the multipole algorithm to automatically re�ne the structureas is necessary to maintain accuracy in the approximation. The structure will be re�nedwhether or not the multipole algorithm is used. off prevents re�nement and will producea warning if the multipole algorithm is used and prevented from necessary re�nement. onis the default. Note that this is NOT re�nement to reduce discretization error. This mustbe done by the user. See the -i option.-i n - Speci�es n as the level for initial re�nement. This option allows the user to re�nethe structure if the input �le is too coarse. It will divide each segment of the geometry intomultiple segments so that no segment has a length greater than 12n times the length of thesmallest cube which contains the whole structure. The default is 0 (no re�nement).-d fon | off | mrl | mzmt | grids | meshesg - dump certain internal matrices to�les. The format of the �le is speci�ed with the -k option. on dumps all �les, off dumpsnone and is the default. mrl dumps the M, R, and L matrices. mzmt dumps the MZM tmatrix. grids dumps matrices for viewing the current distribution inside each groundplane. It only dumps in matlab format. The same is true for meshes which is a matlab �lefor viewing the meshes chosen by FastHenry. For information on using grids send mail tofasthenry@rle-vlsi.mit.edu.-k fmatlab | text | bothg - Speci�es type of �le to dump with the -d option. matlabdumps the �les as MRL.mat and MZMt.mat and are in a format readable by matlab. textsaves the �les M.dat, L.dat, R.dat, and MZMt.dat as text. both saves �les in both formats.-t rtol, -b atol - Speci�es the tolerance for iteration error. FastHenry calculateseach column of the impedance matrix separately. The iterative algorithm will stop iteratingwhen both the real and imaginary part of each element, xk, of the current column beingcalculated satis�es jxi�1k � xik j < rtol � (jxikj+ atol � (maxj jxij j)) (B:1)where i is the iteration number. The defaults are rtol = 10�3 and atol = 10�2.-c n - n = maximum number of iterations to perform. Overrides the default of 200.-D fon | offg - Controls the printing of debugging information. off is the default. onwill cause FastHenry to print more detailed information about the automatic partitioninglevel selection, memory consumption, preconditioner calculation, and convergence of theiterates. 74



B.2.2 Example RunWith the release are example structures 30pin.inp, pin-connect.inp, onebargp.inp,hole.inp, broken.inp, and together.inp. Here is a sample run of FastHenry for the30 pin connector example, 30pin. Comments describing the output appear along the rightmargin in addition to the FastHenry command line option which would change the describedsetting.prompt % fasthenry 30pinSolution technique: ITERATIVE <-- use GMRES (-s)Matrix vector product method: MULTIPOLE <-- and multipole algorithm (-m)Order of expansion: 2 <-- order of multipole (-o)Preconditioner: ON <-- GMRES preconditioner (-p)Error tolerance: 0.001 <-- relative tol (-t, -b)Reading from file: 30pinTitle:**30 pin, right angle connector** <-- first line from input fileall lengths multiplied by 0.001 to convert to metersTotal number of filaments before multipole refine: 290Total number of filaments after multipole refine: 455 <-- multipole neededto refine (-a)Multipole SummaryExpansion order: 2 <-- -o optionNumber of partitioning levels: 3 <-- -l optionTotal number of filaments: 455Percentage of multiplies done by multipole: 100%Scanning graph to find fundamental circuits... <-- find meshesNumber of Groundplanes : 0 <-- some data aboutNumber of filaments: 455 input geometryNumber of segments: 455Number of nodes: 605Number of conductors:30Number of meshes: 60----from tree: 60 <-- fundamental circuits from graph----from planes: 0Number of real nodes:455filling M...filling R and L...Total Memory allocated: 1985 kilobytes <-- Total memory consumedFrequency = 10000Forming overlapped preconditioner <-- form preconditioner for this freq.conductor 0 from node npin4_5_1 <-- do 1st column of admittance matrixCalling gmres...1 2 3 4 5 6 7 8 9 10 11 <-- Iterations until convergenceconductor 1 from node npin4_4_1 <-- Begin next columnCalling gmres...1 2 3 4 5 6 7 8 9 10 11conductor 2 from node npin4_3_1Calling gmres...1 2 3 4 5 6 7 8 9 10 11conductor 3 from node npin4_2_1.. 75



.conductor 28 from node npin0_1_1Calling gmres...1 2 3 4 5 6 7 8 9 10conductor 29 from node npin0_0_1Calling gmres...1 2 3 4 5 6 7 8 9 10All impedance matrices dumped to file Zc.mat <-- Where the results areTimes: Read in stuff 1.51 <-- some execution time infoMultipole setup 11.94Scanning graph 0.01Form A M and Z 0.06form M'ZM 0Form precond 1.36GMRES time 75.92Total: 90.890.980u 0.640s 1:36.62 94.8% 321+2448k 0+0io 4pf+0wprompt %B.2.3 Processing the OutputThe �le Zc.mat is a text �le containing the impedance matrices for the frequencies requestedin the input �le. The �le ReadOutput.c is an example program for reading the text �le forwhatever processing is necessary. It contains the function ReadZc() which reads from a �leand returns a linked list in which each element of the list contains an impedance matrixand its corresponding frequency. See the source �le for more details. This function can beextracted and included in whatever program the user desires.The function main() is provided as an example use of ReadZc(). For each of thematrices, it divides the imaginary part by the frequency to give the matrix R+ jL and thendumps the result to the standard output.ReadOutput.c can be compiled by typingcc -o ReadOutput ReadOutput.cHere is a sample of its output after processing Zc.mat produced by running fasthenryon example �le onebargp.inp:prompt % ReadOutput Zc.matNot part of any matrix: Row 2 : nodein to nodeoutNot part of any matrix: Row 1 : nb1 to nboutReading Frequency 10000Reading Frequency 100000Reading Frequency 1e+06Reading Frequency 1e+07Reading Frequency 1e+08freq = 1e+08Row 0: 0.00112838+3.50478e-08j -2.21062e-05-7.0003e-09jRow 1: -2.23118e-05-6.99564e-09j 4.83217e-05+2.02958e-08jfreq = 1e+07Row 0: 0.00112837+3.50478e-08j -2.21055e-05-7.0003e-09jRow 1: -2.2311e-05-6.99564e-09j 4.83217e-05+2.02958e-08j76



freq = 1e+06Row 0: 0.0011272+3.50501e-08j -2.20335e-05-7.00045e-09jRow 1: -2.22379e-05-6.99578e-09j 4.83168e-05+2.02958e-08jfreq = 100000Row 0: 0.00106093+3.51782e-08j -1.7938e-05-7.00794e-09jRow 1: -1.80765e-05-7.00341e-09j 4.80425e-05+2.02964e-08jfreq = 10000Row 0: 0.000955377+3.58555e-08j -1.25489e-05-7.01913e-09jRow 1: -1.25828e-05-7.01518e-09j 4.75474e-05+2.03045e-08jprompt %B.2.4 Other ExamplesThis example shows how to run fasthenry on example 30pin.inp with user re�nement atlevel 4 so that no segment will be larger than 1/16 of the largest dimension of the structure.It will also have FastHenry dump the unre�ned structure to a FastCap readable �le forvisualization:fasthenry 30pin.inp -i 4 -f simpleRun fasthenry on example onebargp.inp still using the iterative algorithm, but withoutthe multipole algorithm for the matrix vector product:fasthenry onebargp.inp -m directB.3 Compiling FastHenryA tar �le containing the source �les for fasthenry and this guide may be obtained on tapeby sending a written request toProf. Jacob WhiteMassachusetts Institute of TechnologyDepartment of Electrical Engineering and Computer ScienceRoom 36-880Cambridge, MA 02139 U.S.A.This address may also be used for general correspondence regarding fasthenry, althoughelectronic mail may be sent to fasthenry-bug@rle-vlsi.mit.edu, for bug reports, and tofasthenry@rle-vlsi.mit.edu, for questions or comments, if it is more convenient.The tar �le has the formfasthenry-1.0-13Jan93.tar.Zand yields a one level directory when untarred with the commandsuncompress fasthenry-1.0-13Jan93.tar.Ztar xvf fasthenry-1.0-13Jan93.tarIt will create a directory called fasthenry and which contains all the C source �les, theLaTEX �les for this manual, and the example �les.77



B.3.1 Compilation ProcedureFastHenry is compiled by changing to the fasthenry directory, and typingmaketo create the executable fasthenry. This will use the �le Makefile to make fasthenry.Certain DEC compilers run out of space during the compile. If either this is the case orMatlab �les will be dumped, replace the �le Makefile with a copy of Makefile.dec. Tocompile on a Silicon Graphics Workstation, change the �rst line of Makefile toCFLAGS = -O -DFOUR -DOLDPRE -Olimit 2000 -cckrB.3.2 Producing this GuideIn the fasthenry directory, typelatex manual.texand then again,latex manual.texto get the references correct. The manual will be the �le manual.dvi.
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